
7AD-R59 556 NORSTATION GRAPHICS CAPABILITIES FOR THE 1990'S AND vi
BEYOND(U) NRVRL POSTGRRDURTE SCHOOL MONTEREY CA

I N J ZYDA SEP 85 NP5S2-85-12
UNCLASSIFIED F/G 9/2EEEEEEEEEEEEE
EhEEEEEEE/hEEE

IEEE..I - --- Illg

.

.0.

5--

N

lllljll__o°

I..

:'-~~~~~~I MIRCP-RILTO'TS HR

' • NAT1ONA 0 UREUO TAO~0 12. 3j-[Oi
- s..

111-i -III

I'-

1. •14o12
-111°

• ~~~~~~~~~~~~~~~~...--.- ...-.............-.-,. -',. - .. ,.....

NPS52-85-012

NAVAL POSTGRADUATE SCHOOL
Monterey, California

In
In

(D DTIC
Ln gELECTE

SEP 261%5

WORKSTATION GRAPHICS CAPABILITIES FOR THE 1990'S AND

BEYOND

L&.. MICHAEL J. ZYDIA

SEPT 1985

Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research
Arlington, VA 22217

JA .

NAVAL POSTGPADU,,A.E SCHOOL
rloft(;rey, Cali fornia

Iear Admiral K.11. Shunmaker D. A. Schrady
Superintendent Provost

The work reported herein was supported by in part by the Foundation Research
Program of the Naval Postgraduate School with funds provided by the Chief of Naval

Research.
Reproduction of all or part of this report is authorized.

This report was prepared by:

MICHAEL J. "ZDA

Assistant Professor
Computer Science

* Reviewed by: Released by:

O;Afl-41 ACe31 NALE T_. R ---- L

Acting Chairman)ean of In'formation anc
.Department of Computer Science l'O iLy Sciellce

I..J,

.____JMUASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ('hen Deto Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSREPORT__ DOCUMENTATIONPAGE_ BEFORE COMPLETING FORM

I. REPORT NUMBER 12. GOVT ACCESSION NO: 3. RECIPIENT'S CATALOG NUMBER

NPS5 2-85-0 12 E7/Z 020.Yj/
4. TITLE (and Subtlle) S. TYPE OF REPORT 6 PERIOO COVERED

WORKSTATION GRAPHICS CAPABILITIES FOR THE 1990's

AND BEYOND
S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(#) S. CONTRACT OR GRANT NUMIER(@)

Michael J. Zyda

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA I WORK UNIT NUMIERS

Naval Postgraduate School 61152N: -RR000-1-NP
Monterey, CA 93943-5100 N0001485WR41005

II CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Chief of Naval Research Sept 1985

Arlington, VA 22217 13. NUMBER OF PAGES

I MONITORING AGENCY NAME & AODRESS(II differentfnom Controlling Office) IS. SECURITY CLASS. (of this reporl)

ISo. DECLASSIFICATION/DOWNGRAOING
SCHEDULE

16 DISTRIBUTION STATEMENT (of Ihis Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the obet
1

act entered In Block 20, If dlfereunt frtom Repofrl)

10 SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side It neessarv and Idntilfy by block number)

Algorithms, architecture, contour surface display generation, real-time display

generation, graphics workstations

20 ABSTRACT (Continue on reerie old* I neceary and Identify by block number)

We present in this paper a look at the future graphics capabilities of the

workstation. We begin by examining the cyccles of special hardware development

that have occurred for graphics systems in general. We show how the current
evolution of the graphics workstation is a direct response to applications user
desires for higher performance, graphics systems. The software and hardware
levels that perform the input and output graphics operations for the work-

station are described with an eye towards categorizing future graphics capabi-

DD I FAN 1, 1473 elTIONOF I NOV 6,S OBSOLETE

S N 0102- LF. 014-6601 II1" ACCVTTFfI
SECURITY CLASSIFICATION OF THIS PAGE (t3ot Dae Entered)

....

Si9cUmIYr CLASSIFICATION OF THIS PAg (Mme Doe. &er

lities. The implementation of those levels in the Silicon Graphics, Inc.
". IRIS is cited as an example of the leading edge for graphics capabilities in
: a workstation. Current research leading to future enhancements of the graphics
* workstation is presented as a continuation of the historical response to

applications user desires for ever higher performance, interactive systems.

* " 'or

i A

p'1.

,'.

.

A" .o. -

-
t -

s' i 4 ;

S N 0102- LF- 0Id-660i

Si gcu fitIT CL. III PlC ATIO WI O T wI PAGI[Ifllta f4 Os. Eate e)

Workstation Graphics Capabilities for the 1990's and

Beyond t

Michael J. Zyda

Naval Postgraduate School,

Code 52, Dept. of Computer Science,

Monterey, California 93943

ABSTRACT

We present in this paper a look at the future graphics capabilities of the

workstation. We begin by examining the cycles of special hardware development
that have occurred for graphics systems in general. We show how the current
evolution of the graphics workstation is a direct response to applications user

desires for higher performance, graphics systems. The software and hardware lev-
els that perform the input and output graphics operations for the workstation are
described with an eye towards categorizing future graphics capabilities. The
implementation of those levels in the Silicon Graphics, Inc. IRIS is cited as an
example of the leading edge for graphics capabilities in a workstation. Current
research leading to future enhancements of the graphics workstation is presented
as a continuation of the historical response to applications user desires for ever
higher performance. interactive systems.

Categories and Subject Descriptors: 1.3.1 [Hardware Architecture]: architec-
tures. parallel processing. VLSI implementations; 1.3.2 [Graphics Systems]:

muhiprLcessing systems. 1.3.3 [Picture/Image Generation]: surface visualiza-
tion: 1 3r6 Methodology and Techniques]: contouring, interactive systems,

parallel processing; 1.3.7 [Three-Dimensional Graphics and Realism]: line
drawings. line generation algorithms, real-time graphics, surface plotting, surface
visualizat ion. surfaces: 13.m [Miscellaneous]: VLSI;

(;ereral Terms: Algorithms, architecture

Additional Ke.v Words and Phrases: contour surface display generation, real-time
displaN generation. graphics workstations;.

I This work has been supported by the NPS Foundation Research Program. The work was originally presented
at an Institute for Graphic Communication conference on Engineering Workstations, the 3rd of February 1985.

i..-. i:. ?.- .- .-.-.?...... - .- :. -. ..:'.:. -. '-Y.Y I-. -,.'.: -.-."..-. "...".-.-. .".". ."."-.,.. " ".. .

-2-

1. Introduction

Graphics workstations represent the culmination of a long history of hardware developments

for purposes of real-time, interactive applications systems. The idea behind such systems is to

provide the human user immediate feedback of visual information in response to any physical con-

trol manipulations made. Such ce- abilities are an integral part of visual training simulators,

command/control situations, and other time-critical applications. Historically, the effort to

improve the capabilities of such systems has been a push-and-pull cycle of increasing applications

user demands driving special hardware additions to the graphics system. In order to understand

the future capabilities of such systems, we must examine the cycles of hardware development.

In the early days of computer graphics, applications users were happy if they could just get

a picture to the display device. It did not to matter that the display device took two to three

minutes for one picture as the alternative was to not be able to get the particular application

done. In those early days, the computer was generally a single user system, with the graphics

applications program consuming all available resources. The key problem with respect to interac-

tive systems was that there was a lot of idle user time during the waits for the next display. Con-

sequently, one of the first problems that was solved with special hardware was the speeding up of

picture delivery. This can be considered the first cycle of special hardware for the graphics sys-

tem.

Applications users readily took to computer graphics once they saw that they could get their

picture to the display device in a reasonable amount of time. In fact, applications users took to

computer graphics %%ith such a fervor that they began demanding what to them seemed like the

next logical development, the addition of matrix multipliers for the real-time operations necessary

for rotating. scaling, and translating vectors. This was the second cycle of special hardware addi-

tions to the graphics system. This addition to the display system was quite important in that it

*. allowed the development of real-time interactive applications not previously possible without the

special hardware. (One example of this has been the near abandonment in the field of chemistry

. of the use of hard models of large molecules for the more readily manipulated computer models).

"° - ° . - % . ° . o . , - . • . ,. , - . . , o

• o ..

- -

Anyone who has spent any amount of time with applications users knows quite well that

they are never completely sstisfied. The addition of the special hardware for matrix multipliers

came towards the end of the cycle of single user minicomputer systems. Applications program-

mers momentarily got used to the immediate response of the single user computer graphics sys-

tem, and then almost immediately lost that capability. This capability was lost due to the simple

fact that the applications users outgrew the single user minicomputer systems, and moved onto

the larger, shared super-minicomputers. The third cycle of improvements to the graphics system

was in response to that loss. This cycle is typified by the offloading of the graphics and interac-

tion functionalities from the host computer to a special processor dedicated to the graphics sys-

tem. The goal behind this was to reclaim the real-time, interactive capabilities lost during the

move to the shared super-minicomputer. This cycle created the modern interactive graphics

workst at ion.

2. Interactive Graphics Workstation Organization

Current high performance graphics workstations have some variant of the organization dep-

icted in Figure 1. In that figure, we see a central bus, typically the IEEE Multibus, off of which

hang the CPU, the terminals, the disk drives, the Ethernet interfaces, and the other miscellaneous

output devices. On the other side of the CPU, we see a bus going to a unit labeled DPU, or

display processing unit. with that bus passing through and towards the actual display device, or

display surface. Connected to the DPU" are an array of interactive devices, i.e. mouse devices,

joysticks. dials, buttons, switches, data tablets, light pens. and perhaps, a keyboard. For this

stud%. we are primarily interested in the part of Figure I directly concerned with graphics.

\'tith respect to high performance graphics. and the top half of Figure 1. there are two

operations with which we are concerned: (1) Getting the Picture There (from the applications pro-

gram to the display surface). and (2) Manipulating the Picture (by way of some movement of the

interactive devices such that a picture change is generated). The first operation, Getting the Pic-

ture There, is most often termed the "output" function in the field of computer graphics. This

means that we use some mathematical description encoded in the applications program to put a

nteractive
Terms.Devices:

Mouse Devices
Joysticks
Dials
Buttons

DisksSwitches
Data Tablets
Light Pens
Keyboard

Figure I
Basic Block Diagram of a Typical Interactive Graphics Workstation

.......................1

-~~~~~~~ ..- .-U- .-i--- .- r. -. .

Applic. Graphics Device T U

Program Package Dve To

(Software) (Software) (Low Level

Software)

Figure 2
Software for the Output Function

Applic. "raphic Device
Data Data Driver

Struct. Struct. Data

gram PackageDrvrT

Pp I DP
Subroutine Opcodes +

Calls Data

Figure 3
A Look at the Applications Program

4 -

visual display, or output, on the display surface. In order to properly understand the output func-

tion, we need to examine both the software and the hardware currently used to perform that func-

tion.

2.1. Software for the Output Function

A sketch of the levels of software involved in performing the output function is seen in Fig-

ure 2. In that figure, we see an applications program (software) making calls to a graphics pack-

age (software), with those calls being converted into calls to a device driver (low level software).

Beyond the device driver are even lower level software calls, or perhaps, commands directed to

the DPU's hardware.

The applications program is the start of the pathway to the DPU. The applications pro-

gram is the set of computer instructions that maintain the abstract mathematical description, or

model, of the applications user's world. This means that if the applications program is a VLSI

design program, that it is the set of instructions that knows about transistors, registers, etc.. The

applications program makes calls to the graphics package (Figure 3). The graphics package

makes some transformations on the data passed to it, and passes the transformed data onto the

device driver. Part of this transformation step is putting the data into an opcode format the dev-

ice driver expects. The final operations in the software pathway to the DPU are performed by

the device driver. The device driver converts the data received into the opcode streams required

by the DPU The next step in the output function is a hardware step. i.e. the)PL"s conversion

of that stream into a form that can be sent to the display

2.2. Hardware for the Output Function

Once %%e have a rough idea of the ,oft%are path~a nrecesar- to perform the output func-

tion, we then need to look at the hardware pathwa). The hardware pathway is mostly contained

within the DPU (Figure 4). The only part of the hardware pathway that is outside of the DPU is

the pathway from the refresh subsystem to the displa% surface. The DPU is comprised of the fol-

lowing pieces of hardware: the display controller, the raster subsystem, the frame buffer. and the

.:.7

refresh subsystem. We can best understand the function of these different components of the

DPU if we discuss them in terms of their data flow. At the start of Figure 4, we see an opcode

stream entering the display controller. This stream contains the instructions and data output by

the device driver software. The data that leaves the the display controller for the raster subsys-

tem are lines and polygons, and their associated colors and fills. The raster subsystem, in turn,

converts those lines and polygons into the set of pixels necessary for their representation in the

frame buffer. The frame buffer's pixels are read by the refresh subsystem, which converts those

pixels into electron beam deflections. With the above brief overview of the data flow of the DPU

in mind, we can define the parts of the DPU with respect to the graphics capabilities needed for

the output function. We begin by looking in more detail at the display controller.

2.2.1. Graphics Capabilities for the Output Function: Display Controller

The displa% controller is best understood in terms of its data flow, and its operational capa-

bilities. As seen in Figure 4, the display controller has an opcode stream coming in, as formatted

by the device driver, and has vectors and polygons going out. The stream coming in is comprised

of opcodes follo&ed bN data. The data is a collection of untransformed coordinates, matricies,

text. colors, linestyles, fills. etc.. The data going out from the display controller is comprised of

transformed coordinates in frame buffer space. text. colors, linestyles, fills, etc..

The (perations the display controller performs on the input data are the following: (1)

matrix transfi,rmations. i e rot at ions. scalings, translations. (2) coordinate system mappings, and

clippings i.e. world coordinates to frame buffer coordinates. (3) projections. i.e. 3D to 2D,

perspective orthographic. and (-4) display list management. No%% the first three operations are

familiar t,(ihoe xith a background in graphics The onl. one that requires some explanation is

the furt h iperation. that of display list n a nipernnt A d spla. list is a set of instructions

describing the desired image. In reference to the previous discussion, it is the data input as an

opcode stream The displa. list is interpreted by the displa. cintrller The display controller

determines the operations it needs to perform on the input data from the display list, and passes

on the remainder of the %ork to the next systeri in the hardware path, the raster subsystem.

4-4

C4
.4-4

U)O

0 0d

L) Cd

-~C a)*r

Q) E

-a
0~a

14

d,, not co'r the algorit hi here in great detail. We onl. note that for tile largest three-

diniensi(onal grid of interest for the above application, a 30 x 30 x 30 grid, this means the poten-

tial for 75.690 parallel operations (Figure 9).

4.2.3. Architectural Goals for the Contour Surface Display Generator

The first goal in the design of the contour surface display generator is to build a system that

meets the performance requirements. i.e. a new contour surface display computed from a

30 x 30 x 30 grid. and delivered to a display device in one-thirtieth of a second. This is an ambi-

tious goal but it must be noted that one-thirtieth of a second is the maximum amount of time

alloable for the operation. AnN longer amount of time does not provide the viewer smooth tran-

sitions betAeen successive contour surface displays. This goal says nothing about the load time of

the 3() x 30 x 30 grid to the special piece of hardware that computes the contour surface display.

('orisequentlN. we all, solutions that pre-load the grid.

The second g,,al for the , of the conto)r surface display generator is the one

rrienti, ned aboev, that %&c ,e able t, plug it int(, an existing graphics s stern with minimal

hard aare and soft aare chane,, For the purposes of this studx. the iarget graphics s.stemn is

cho'.,en to be the Silicon (Graphics. Inc 111IS workstation 2 . The Silicon Graphics. Inr IRIS is

cirr.i 1\ t h (h vt perf,,rniar e craphics system that best matches the selected application's

4.2.4. Architectural ()itlizies

(i x,ri that %, haxv a dvnhl.- ,' ri able algrithm for contour surface display ge,,cratr,

:;i,1 tx-\ , T lrai ,ir v,.al i, a 'tri ,n l ard \LSI inultipr,,cessor. there are sortie simple starterriert,

. :i K, ; it h, x (,m - r(hn ci r r '' The fr,t staterent is that ii i, (-,cro ried of an

arrar 4 mriclpfenr'n r pr,,cessrs. each proccssor containing somne subpart of the total algorithm

(ieure 10) (N,,te, we call these processor,. algorithm crripomnent processors.) In the case of the

(rf,,r 'urface d iplav generation algorithrn. this mean, that each processor contains one or more

2 x 2 shigrid, taken fr,,rn the larger three-diniensirnal grid It also means that each processor is

• ". ". ". " - .. .- ". "" .'- ." ., ," . ." " . ." " - ;" . . . ,, ad a a,',--" -s'.-m-tm ,I ,,-ami& ,dl m'-a , .x i i 'md, mm-. N

A 2 x 2 Subgrid

12 . .1

A 2D Grid of' Size 1 x mn Has
(1-1) x (mn - 1.) 2 x 2 Subgrids.

A 3D Grid of Size 1 x mn x n Has
x (mn-1 x (n m) r x (lx (n 1)-n x (1)x (mn-1

2 x 2 Subgrlds

2 x 2 ,8t) g rd Co) rw, for 21) anid 3D Grids

13-

the user is turning the various knobs on a control console 16. The values read from these knobs

are interpreted by the program as modifications to either the molecule or the surface display.

Modifications to the molecule take the form of bond rotations or bond lengthenings. Modifica-

tions to the contour surface display take the form of an increase or decrease of the contour level.

The goal of this process is to produce the stick model of the molecule that best fits inside the

given electron density data set. The user can determine whether or not the model fits the density

grid by modifying the contour level, shrinking the contour surface to the molecule. Similarly, the

user can expand the contour surface from the stick model for better visibility. This function

requires that the hardware have the capability to rapidly change the contour display as its con-

tour level changes.

4.2.2. Decomposable Algorithm for the Contouring Operation

The algorithm around which the design of the contour surface display generator is con-

structed is presented in 141. That algorithm is constructed from a two-dimensional contouring

algorithm that is used to contour all the possible planar. orthogonal, two-dimensional grids of a

larger three-dimensional grid The two-dimensional contouring algorithm of that study is

comprised of components. called algorithm components., that operate on individual 2 x 2 subgrids

.f a larger t%o-dimensional grid. (Note: a 2 x 2 subgrid is defined to be that portion of the two-

diiiierional grid bounded b3 four adjacent grid points.) In the algorithm. the comtputations neces-

-ar% for generating the contour lines for a single 2 x 2 subgrid are independent from those

required for an% other 2 x 2 subgrid. If we compute the contours corresponding to contour level k

fr all 2 \ 2 sulgrids of a two-dimensional grid, then %e will have determizined the corml lete et of

, r- f,,r that grid If %%e corm put e the contours corresponding to cowl: r level k for all pssi-

, 2 2 vrtd- ,f the larger three-dimensional grid. then %%,e %ill have the cmrplete conliour

surface displa\ for that grid. The assemblage of the contours created by this process. i.e the

-triiult aneous display of all the contour, created for all 2 x 2 subgrid, of the larger three-

dimensional grid. produces a "chicken-% ire-like" contour surface display (Figure 8) The full

deeloprent of this algorithm can be found in 14 We refer to the results of those stu 'Ies. and

... -......... ..-.. .
,,. am .# _- r ." - 4_,. . . .-_ ,.,, , -.. ,.~md Jmd -.- a,-mm m ~ nm a .mmuraa l dmd n ~ m

Figure 8
Contour Surface Display Generated from a Hydrogen Atom

Wavefunction Squared (3dz2 orbital)

12

The second part of the research effort in the area of VLSI computer architectures is the

evaluation and refinement of the software tools available for putting an architecture on silicon.

Since VLSI technology is relatively new, the available software tools for producing special purpose

VLSI chips and systems are crude. The research of the fourth cycle presupposes the existence of

such software. Since this is clearly not the case, this research effort necessarily encompasses the

refinement and development of such software tools.

4.2. Where We Are Today in the Fourth Cycle

The initial special hardware efforts of the fourth cycle are the construction of single board

VLSI multiprocessors compatible with commercially available, high-performance graphics works-

tations. The selection of the commercially available workstation as the bed for the special

hardware additions cuts the research effort with respect to real-time display generators in half, by

delaying for later consideration possible changes to the design of the display system 1. Such a

sectioning of the research effort allows the design and testing of single board parts of perhaps

much larger VLSI systems. One such effort underway at the Naval Postgraduate School is the

design of a Multibus compatible. single board VLSI multiprocessor for generating contour surface

displays in real-time 13.

4.2.1. Contour Surface Display Generator

The goal of the contour surface display generator is to produce and deliver to the display

surface of a graphics workstation, in one-thirtieth of a second, the complete contour surface

displa. generated from a 30 x 30 x 30 three-dimensional grid. The application in mind for this

,\stern is one directlN from X-ra. crystallography. the determination of molecular structures from

eletron denisity data I . Surh an operation is eexcuted interaci iel. by using a computer graph-

ic. program that displays a Dreiding (stick) model of the molecule, inside a contour surface

display of the corresponding region of the molecule's electron density grid. In addition to the

graphics function, the computer program monitors a series of signals generated by the user, while

There are currently substantial research efforts in the direction of the redesign of the graphics system 15, 10,.

• ~ -.. ...

• " . . .". . . -...". .N- - .o - ,"".,"" ," . "", '° '°° ° ,
' % '

'
°

" '

-1-.

4.1. Fourth Cycle of Hardware Improvements to the Graphics System: Research

Besides the improvement of the capabilities of the standard hardware that performs the

input and output functions of the graphics workstation, we see the start of a fourth cycle of spe-

cial hardware developments also utilizing the VLSI technology. In this new cycle, the prominent

work is the design of special, application dependent VLSI architectures for the real-time display

generation of select graphics algorithms. The thrust of this research is the development of a

methodology for taking a graphics algorithm and producing a silicon system that performs that

algorithm. (The need for a methodology is quite simply to save time for the next algorithm

through the hardware development process.) The scope of this work is quite large in comparison

to the other cycles of special graphics hardware development. It encompasses the areas of real-

time graphics software engineering, and VLSI computer architectures. Real-time graphics

software engineering is part of this effort in that before one commits to implementing a particular

graphics algorithm in silicon, one needs to be able to evaluate whether or not that algorithm can

be computed in real-time on a currently available, high-performance graphics system. The

research effort is to produce a system that can automatically model the desired algorithm such

that runtirne parameters can be obtained for hypothetical architectures, i.e. known processors like

the M('t8000 for subparts of the larger algorithm.

V'LSI computer architectures are part of this effort in that the hypothetical architectures

modeled are those capable of being implemented in VLSI. The research effort is twofold. The

first part is the determination and e'aluaiion of a special architecture for the studied algorithm.

The deterroinaition of the architeciure is acrornphlshed through iterative design refinement driven

t. p,r'vio, experieire with such special processors. The evaluation of the architecture is both a

rtintmt e e aluati,,i. and a technological evaluation. The runtilie evaluation determines ifthestu-

died algorithm is capable of being executed in real-time on the hypothetical architecture. The

technological evaluation determines if the proposed architecture is capable of being built within

current technological constraints. Part of this effort is the examination of the changes required in

the design of the graphics system that receives the output of the real-time display generator.

.
- °. . .- - -". o .- . .. - , . ,-, -.-, .-.- .,r 2",,. - ',.- -.,"--.-. . ,' -. . . .".-... ". ." n-, ' " " '' " " " ° l

- 10-

with that pixel replaces the old one in the frame buffer, and the new z coordinate is written into

the Z-buffer. If the new pixel is farther away than that indicated in the Z-buffer, the pixel is dis-

carded. This special hardware addition is to the raster subsystem of the IRIS. Though no value

is cited in the IRIS literature for the speed of this Z-buffering technique, it should operate at

approximately the same rate as the polygon fill hardware, with some degradation due to the addi-

tional z coordinate value that needs to be propagated.

4. Trends in Graphics Capabilities for the Workstation

The above is a quick overview of one leading edge graphics workstation. There are others

that exhibit similar capabilities, though most are not nearly the speed of the IRIS. From this

brief look at the leading edge though, we see two trends, (1) the increasing importance of high

performance graphics functionality in the workstation, and (2) the increasing use of VLSI technol-

ogy to implement this functionality. The first trend, the increasing importance of high perfor-

mance graphics functionality, is a continuation of the cycles of hardware additions requested by

the ever unsatisfied graphics applications user. We do not expect this trend to diminish. In the

past. the graphics applications user became accustomed to new hardware additions rapidly. only

to turn around almost immediately with new requests. Given human nature, we do not expect

this to change.

To understand the second trend, the increasing use of the VLSI technology to enhance the

graphics capabilities of the workstation. we need to answer the question, what does VLSI provide?

VLSI provides the capability for the parallel operation of large numbers of relatively inexpensive

processors 8. 11 Currently. we see 2 million transistors per chip in the research laborator. 9

We are promised 10 million transistors per chip sometime between the \ears 1990 and 2001 12

From these numbers graphics researchers tend to see tens of processors per chip all operating irn

parallel on some graphics algorithm .

:Some landmarks for transistor count are 6S,000 transistors in the Motorola MC66000(I,000 in the processor,
50.000 in the PLA and ROM) , 18,000 transistors in the ZSO00 4 , 40,000 transistors in one Geometry Engine
chip 3 . and 194,000 transistors in the Motorola MC68020 7.

%-,
...

............-

Engine floating point format to world coordinate format. We note here that this operation,

though not directly useful for the graphics output operation, is somewhat useful when utilizing the

Geometry Engine pipeline as a computational engine. The brochure produced by Silicon Graph-

ics, Inc. for the IRIS-2400 model containing this pipeline cites a capability for 80K 4 x 4 transfor-

mations per second.

The Silicon Graphics, Inc. IRIS-2400 has other leading edge functionalities present in special

hardware. One of these is in the raster subsystem of the DPU, polygon fill hardware. This

hardware converts two and three-dimensional polygon data into the set of textured and colored

pixels that represent the polygon in the frame buffer. The rate cited for the IRIS-2400 is the

capability for filling polygons at approximately 44 million pixels per second.

Another leading edge function of the IRIS is depth cueing hardware. Depth cueing is the

intensity modulation of line segments so that components of the segment near the viewer appear

brighter, and those farther away appear dim. The rate cited for this hardware capability is from

1.5 to 3 million pixels per second.

Gouraud shading is another feature of the IRIS-2400. Gouraud shading is a smooth shading

algorithm useful in depicting surfaces via computer graphics. This algorithm works by taking the

polygons that form the surface and shading those polygons by linear interpolation of the color

intensities specified at the verticies of the polygon This technique eliminates intensity discon-

tinuities and produces a smoother. more realistic surface. The rate cited for this hardware capa-

bility is up to 3 million pixels per second

Hidden surface elimination is provided via special hardware on the IRIS-2400. The

*hard%%are addition. called a Z-buffer is a special piece of memory the sanie two-dimensional size

* as the frame buffer. Depth information. z coordinate values, is stored into this memory at the

* same time as color information is written into the frame buffer. This means that for each pixel in

*' the frame buffer. there is a matching z coordinate. This information is used in the following

fashion. As each new piece of the picture is processed by the raster subsystem, the pixel values

. are compared against those already in the Z-buffer. If the ne% pixel is closer, the color associated

-.................... . -:, -.--. -....-.... - i

U))

4-) -4

4))

0 04
0.0

4-))

4-4I

: * -z7

= 7

operations we are currently capable of performing in the graphics workstation. Without special

hardware to support special input functions, we are limited to the slow. feedback pathway from

the DPU to the applications program and back.

3. Leading Edge Graphics Workstation Capabilities

To this point we have not talked about commercially available graphics workstations' capa-

bilities. We have only given a generic description of the input and output functions with respect

to the hardware and software subsystems necessary to perform those functions. To show the lead-

ing edge of technology for the graphics workstation, we refer back to some of those descriptions

and point out how the) are available on one high-performance graphics workstation.

3.1. The Silicon Graphics, Inc. IRIS Workstation

In the section on graphics capabilities for the output function of the display controller, we

listed the operations that are performed by that part of the DPU. They are (1) matrix transfor-

mations, (2) coordinate system mappings. and clippings, (3) projections, and (4) display list

management One of the leading edge developments that have been accomplished for this subsys-

tem of the DPI is-"4h addition of a special pipeline processor to perform the first three functions

of the list. The best example of this for a graphics workstation is that of the Silicon Graphics.

Inc. IRIS (Figures 6 and 7. and 2) The IRIS system has a "Geometry Pipeline" for these opera-

tions This pipeline has five major components. all implemented via special purpose VLSI chips.

The first component, as shown in Figure 7, is a special VLSI subsystem to convert "orld. or appli-

cations program coordinates to Geometr. Engine floating point format. The second component is

a four chip pipeline for matrix multiplication. This part of the pipeline operates on 4 x 4 matri-

ces setup for rot at ions, translations, and scalings. The third component is a six chip pipeline of

clippers that perform geometric clipping, i e. top, bottom, left. right, near, and far clipping. The

fourth component is a two chip pipeline, labeled scalers, that performs a perspective division, the

projection operation, and the mapping of the three-dimensional coordinates to two-dimensional

space The final component of the pipeline is a VLSI subsystem to convert back from Geometry

.

.

. .. ,. .. , 1 . .' l"." .' °° oO ." .- .- . '° °-',°. °".
"

d V

0 .

0oa. m
V4 d a

0 _ a

435.0

r-4a 944 0

0~- -,4

4- a0*0
*45 .Xv

do o

Q 0.0

..4 04

144

a N 0 a
to rZ CL 2

0 0
U)0

08 0

00
m.

.......................................

7 -

picture at that level, and then send the new picture via the output pathway described above.

This is emphasized in Figure 5 by a pathway of directed arrows from the DPU in the direction of

the applications program, and another set of directed arrows back towards the DPU and then the

display. The values read from the interactive devices are typically passed back to the applica-

tions program in an unchanged, or raw form. In the applications program, the raw values are

utilized in an applications programmer written procedure to modify some aspect of the current

display. An example of this is the conversion of a dial value into an angle, with that angle being

plugged into a rotation matrix, or rotation command passed back to the DPU.

2.3.1. Hardware for the Input Function

Other than the actual interactive device hardware, and the interfaces to support those dev-

ices. there tends not to be much special hardware to support the input function. There are two

major exceptions: (I) direct cursor movement hardware support, and (2) display list parameter

modification hardware. Cursor devices, i.e. mouse devices, data tablet pens, and light pens, some-

times have hardware support that eliminates the need to feed raw data values back to the appli-

cations program to change the position of the cursor. This operation is generally carried out by

the DPU. It does not require much in the way of special hardware.

Display list parameter modification hard-Aare is similar in goal to that of the hardware for

direct cursor movement. This hardware provides a mechanism by which modifications of parame-

ters embedded in display lists can be routed directly from the DPi' on interactive control move-

ment. rather than through the longer applications program loop. An example of this type of

operation is the routing of a raw control value, or some simple linear modification of that raw

value, as a direct replacement of an argument in an instruction in a display list. i.e. replacing the

angle value in a rotation command. This type of operation is similar in concept to the ill-

thought-of practice of self-modifying code and requires some knowledge of the internal structure of

the selected graphics system's display lists.

Besides hardware for the above two input operations. there is generally no special hardware

for the input function. This lack of hardware limits the sophistication of the types of interactive

.-

.

• -. , ,-.--'-,-. . ' .- i. ... "-.. . - . . ,,,".5 .,,.,i..: ' . *% .- . '*

ou
rq 54

544)

r.4

r4

r..4.>

a) -4

9z- 'b

r-44

4) 54 L1d
U a>

bD 4
.. 54

0) u
Cd 4 .

".4 0.

p3. b

(I2

V t.

02

' ,.. .. -. - .: - - - I , : . , *- _... ,.

* -6-

2.2.2. Graphics Capabilities for the Output Function: Raster Subsystem

The raster subsystem receives lines and polygons that have been transformed into frame

buffer space, text, colors, linestyles, and polygon fillstyles from the display controller. Before we

can discuss the operations performed by the raster subsystem, we must first describe the frame

buffer, the destination for the output from the raster subsystem.

The frame buffer is a two-dimensional array of memory. Each position in the frame buffer

has a value, called a pixel. The data at each pixel location corresponds to the color that should

be drawn at that position on the graphics display. The operations performed by the raster sub-

system are all destined for output to the frame buffer. The raster subsystem converts input line

segments into the set of pixels necessary for the display of those segments. The raster subsystem

also converts input polygons to the set of pixels necessary for the display of their boundaries, and

interior fills. The raster subsystem provides a similar treatment for text, i.e. it fills the frame

buffer with the appropriate patterns of pixels.

2.2.3. Graphics Capabilities for the Output Function: The Refresh Subsystem

The final part of the hardware pathway for the output function is the refresh subsystem.

The refresh subsystem reads rows of pixels from the frame buffer and produces the necessary elec-

tron beam deflections on the cathode ray tube of the graphics display. It performs this operation

either every sixtieth or every thirtieth of a second. depending on the cathode raN tubp driver tech-

riology used.

2.3. Software and Hardware for the Graphics Input Function

WVith respect to the graphics workstation, the second operation with which me are concerned

i- the input function (Figure 5). It is more correctly termed the picture manipulat ion function

but we stick to the accepted terminology. It is called the input function because the operation

the applications program is performing is reading a value from an interactive device The input

function is really a feedback function, i.e. we read some control values from the interactive dev-

ices at the DPU, pass those values back to the applications program. make a change in the

.°. .-

GE Port

a ACP ACP DAOP - ACPD
y Set Set iSet Seti

pp

No.1 No.5 B No.13 No. 1 B

U U

S S

Figtur1Cotu Sufc IislyGero.

S u r a c
.C .C. ~ Zt~~ t.r ~ *.

responsible for -otnputing the part (if the surface d ispila% represented lv it- sujlirids. 'h, syston

performns I hese corn11,11t at ions in parallel.

'The second statement we ran make about the architecture for the contour surface display

generator, is that, even though we compute the subparts of the contour surface display generation

algorithm in parallel, we need to output the coordinates and drawing instructions generated in

each processor in a serial, one processor at a time. fashion. This stat.nent is based upon the

requirement that the contour surface display generator be plugged into an existing graphics sys-

tem (Figure I). Currently available graphics systems only have a single data path into their

display processing units. Consequently. some mechanism needs to be providepd to output the data

generated from the algorithm component processors. one at a time. to th, displa. processing unit

of the graphics system.

A third statement we can make about the architecture is that we need some mechanism for

deliscring the 2 x 2 sAbgrids. Subgrid delivery is qualified by the necessity for algorithrn corn-

ponent processor addressabilit), i .. %r need to be able to put each set of subgrids in a pre-

let rtiiied proe usor .\ 'liallfira ion to lhi- pr,.,,s.o r adr-,sabilitN ,'npaliit, i, th.t it Trils! Ie(

a inple ierhanisnrr that dceorit rfqu ire a lhrge nuri, er oif (onrt rl lines and arkitration circuitr.

The reason for thi, qualificat ion i, that %e expect the addre,,ing merhanisr t, run bPiPen noil-

itpIp \l.SI chips. This qualifiration i, as,,ed upon the knowledge (hat paeka.,, pin' for c(,fntrol

line, her eo VLSI ,hip. are. a sarco resourre. The output mechanism for the coordinates and

'iraginrg instrue!ions of the coil our surface display generator needs a similar processor addr"sa-

Iit '. eapaliltt.>

f f urii , 'r a r'oI ,'," ato in f Owat uth arrhitr rure is that we need sone nerchanisr f,,r

,.rhiritig the nest ('tlir esei-t(iih, algorilhih r(nlipotivnI processors. The new rontour]-sr],

can be dtuliered either in parallel. it, the conplete ,, Stern of processors during one cycle, or if)

serial. to each processor on a separate Ncle. Since we are already putting one mechanism in the

'Nstem for loading data into th, processors we expert that it can also lie used to deliver the neA

contour levels Consequentfl. the ne% contour levels are delivered in serial, in a manner similar

.7 .

9) EH

to H

00

4-44

bD
-4 0 .4U

0 0p r-4

co C.

00

r-4 -4

- 1E -

to the subgrid load mechanism.

4.2.5. Architecture of the Contour Surface Display Generator

The contour surface display generator is comprised of four subsystems: (I) the array of algo-

rithm component processors, (2) the controller for that array of processors, (3) the algorithm com-

ponent processor itself, and (4) the interface to the graphics system. Figure 11 shows how the

four subsystems relate to the target graphics system.

4.2.5.1. The Array of Algorithin Component Processors

Figure 11 depicts the array of algorithm component processors as a single box, with three

connections to the outside environment: an input bus for contour levels and subgrids, an output

bus for coordinates and drawing instructions, and a bus for controlling the array of processors. A

dual bus configuration is chosen to maximize the amount of concurrency in the system due to the

autonomous nature of the input with respect to the output.

The input bus is the medium responsible for delivering subgrid definitions and contour levels

to the arra. of algorithm component processors. lecause this is the only data required to be

transmitted on the bus. the bandwidth of the input bus does not need to be very high. The rate

at which subgrid definitions are loaded into the algorithm component processors does not directl.

affect the real-time capabilities of the system. The real-time capabilities of the contour surface

displa. generator are determined b. the rate at %hich data can be produced in each algorithm

component processor. This. in turn. directly affects the rate of output to the display processing

unit. 'Hie output bus is responsible for delivering the coordinates and drawing instructions to the

d-la. prce-sing unit.

"l'h, t ,,nlrol bus for the colnitour surface display generator contains all the control lines neces-

sar. t,, manage the data flow on the input side of the system (Figure 12). Two additional control

line! ar' required on the output side of the system to coordinate the two wire handshake between

the algorithm component processors and the display processing unit ((;eometr) Engines). Figure

12 shows the signals that are needed for all the pin assignments of the algorithm component

...

InIaput

SYSTEMS :1B0 IiS

Control Bus

Multibus Reset
"Interface Test
85 Pins

Load Subgride

Compute Contours

SInput Count Enable

Input Count Enable Return

Output Count Enable

CONTROLLER Output Count Enable Return

Wait/Test Acknowledge

Write Enable

Error

I ilput Output
B~usBu

1110 I415 Al.GOR 1 THM 0140 01115S

ResetWait/Tewt
Acknowledge

EnablIe

L Ex r or
~ICO ('M PONEN T

C.'..'Output Count
e e u- Enable Return

, (- .0 Out put Count
K.~t . EnablIe

P)ROC CES SO(R
Gild --- ge req

C .. Kge. ack

0- .. P rI I)1 iagI rani S If t he S :esCont roll1er
a'1 1 -4 t u AlI g or i t h m Component Processor

L
I

_ , : , . , ; . -. . . , , / - . . . - . - . - ". .- . . .-

p.. -17-
I-I.

processor.

4.2.5.2. Systems Controller

Control of the array of algorithm component processors involves the integration of several

different components. The one which coordinates the operation of all other components is the

systems controller. The systems controller converts incoming signals from the Multibus bus mas-

ter of the Silicon Graphics, Inc. IRIS workstation into signals which make sense to the algorithm

component processors. The Multibus bus master is the board in the Multibus Backplane which

places the commands on the Multibus. The systems controller is a slave in that it reacts to com-

mands placed on the Multibus.

4.2.5.3. Algorithm Component Processor

The component that is responsible for the production of the coordinates and drawing

instructions for the contour surface display generator is the algorithm component processor. Each

of these processors is identical and functions independently in the production of the outputs. Fig-

ur 13 is an oxervie% diagram of the ke% components of that processor. \\e do not go into great

detail about that processor other than to point out the items that appear in Figure 13. It should

be noted that the processor is a full microprocessor of the Motorola MCG8000 class. The reader

tttt ersted in a more complete treatment is referred to 13

4.2.5.4. Systeml Interfaces

The rotour surfare display generator is connected to the Silicon Graphics. Inc. IRIS graph-

' -t it,' I. mean- of the I E: stantard Mu hiu Backplane lius 6 This Multibus connection

prv, id,. all inputs it, the contour surface diila\ pnerat ,r. The M ult ius interfaces to basicall\

di%%, dflerelit ,lassifications of bu ,mdulea- (I) \la-,.r- - those modules which generate corm-

mands. and (2) Slaves - those which respond to commands. The parent processor (MC68000) is

the Maier module for the graphics s. stem. 'he contour surface displa, generator is a slave

module in that system.

-....... -.. -..-. - -... ".-...".-.--...."....".....".-':
. - . - - . -' ., , ." . , " , . . • _ .. , ., ,,:, ._,_ ._ . _, h,__ la..1,,az..,,,,[a .,....! I

.1 - .--

Q)

U)U

u 0

0) 0 0

4-)b- 4-

-4-

U)L

0 0 Q0

0 b0

0 (0
W

(120

V) . .

The outI put of the t'otiour surfatce d ispla% generator is ito the Piv ale Bus of te IRIS sy'sicem

Fig ure 1 1). The Pri~ ale Bus is a unid irect inal Wi bit bus dedicated to the(prov isionm of coord i-

nate and drauintg inst ruct ions to the hiigh speed Gvoinet ry Engines. Coordination of the transfer

of data between the algorithm component processors and the Geometry Engines is done via a two

line handshake protocol.

4.2.5.5. Systeii littpleueiat at ion

The IRIS graphics workstation is comprised of the UNIX operating system, the Ethernet

comntmunicat ions network and a real-time t bree-dittensional color-raster graphics system. The

hardware eletments that miake tip t he workstation arc conntif'led t.o one anlot her via the Multibus

(Figure t3). Graphics comnatds are issued by a host terminal oni the workstation. The terminal

uses the Mot orola N1Ct6S0t) as a controller aind a (;touletiry Engine pipeline for mnat rix operations1

whose out put is destined for a high-resolut ion color raster-scali displa%. The conimumicat ions

between devices is done oti the Mult ibus. Graphics pipline data is transferred on the Private

Bus.

Graphical output is initiated 1l\ the(CPI,\l' sendintg commtianids and datia to the graphic.,

pipeline. The Geomectry Frigiie perform matrix transformat ions, clipping and scaling. The

fra iii liffer controller tilt rp;rvt - c haract ers. cont rols fonits. and conistruect., lines and poly gons.

Thc tm;'bi e cootroller do Ma -,cn~ crs~on iof pol~tioris. lines and characters. The results, Of those

0 1peral ion a re laiedl lit, te fr aijie I itiffer 'Te dsplai% controller fetches the picture-element

\alue- from ithe framne buiffvr and dra%%s thit n t ' face of the co)lor nionitor 2'.

4.2.5.6. lii gratioii ot)r hC oitur Siirface Disj);iv (;elerator

Th.,' N1liil1-w uris ickplanc of I ho' IRIS uppllliv' the pouer and inter-board conuilunications

capabilities required to inmplemtent aii integral ed gratphics, s~ stemr. The contour surface display%

genierator is constructed as a peripheral board and is added to the IRIS graphic,; system as a slave

1 () atd tleiInor% device. Figure 6 shows the contour surface display generatoir as an integral part

of that system.

. .. , - _ . -.- -. - . . ,.. . .----

GE

J J BOARD

MC68000 (GF1)

M

L PROCESSOR 1

T

1 2

B B = BOARD

B ack

Plane

(PM1)

Figure 14a
Silicon Graphics, Inc. IRIS Pipeline Connection

for the Private Bus (Courtesy of Silicon Graphics, Inc.)

GE

J J BOARD

CONTOUR 3 (GF1)

M

U

L SURFACE

T
I -

B - DISPLAY

U Back

GENERATOR

Figure 14b
The J3 Pipeline Connection of the Silicon Graphics, Inc. Private Bus

for the Contour Surface Display Generator

."=- . .• . , ., .q i q° .• o
•".... ... - .- t' m - a~lt'". I

•
-k

•
• - • .o.. . -. " ". .o.,. •

- 19 -

The use of the contour surface display generator in the graphics system involves the estab-

lishment of a physical connection between the peripheral board containing the algorithm com-

ponent processors and the display system. This connection involves the Private Bus port which

transports the data directly to the Geometry Engines. In its present configuration, the IRIS sys-

tem has a connecting cable that directly connects the system processor to the Geometry Engines

(J3 connection of Figure 14a).

When the contour surface display generator is added to the system, this physical connection

must be shared by both itself and the system processor. To enable the user to alternatively route

processor and generator data t- the Geometry Engines, a hardware switch is added to the system.

This hardware provides the system with a way to multiplex the direct path of the Private Bus. A

software switch then provides the control of the Private Bus' origin and configuration. When

activated, this switch establishes a path from the contour surface display generator (Figure 14b).

If it is not activated, the IRIS system remains in its original configuration.

4.2.6. Hardware Complexity Estimate

The above is a quick overvie% of the architecture of the contour surface displa) generator.

One of the key components in this system is obviously the algorithm component processor. In

13. it is determined that 50 algorithm component processors are all that are needed in the sys-

lem to generate and deliver the average sized picture for a 30 x 30 x 30 grid. In order to deter-

mine the feasibility of the complete system, we need a circuit complexity estimate for the size of

the algorithm component processor. Figure 15 is a summar. of the number of transistor

equivalent devices necessary. The derivation of the numbers on ihat figure is in 13 We note

only that the total number of devices required for ne algorithm (ompoilent processor is about

(i0K devices This number is well below the two million de% ices per chip level that is currently

being produced in research laboratories 19'. For this level of chip complexity, the array of algo-

rithm component processors can be built in less than 25 VLSI chips. At the ten million devices

per chip level, this is less than 5 VLSI chips. The design of this system is therefore within the

grasp of current technology.

..'-,...", -.. o. -.-.... -... -.......-.... ,-.,-..,..,...--..

(1) RAM space -- (2 devices/bit)

8192 x 32 bits 524,288 devices

(2) ROM space-- (I device/bit)

-- Tree tables

2048 x 16 bits 32,768 devices

-- Microcode

2048 x 32 bits 65,768 devices

(3) Processor space --

-- ALI'

-- Register block

-- Control section

-- Data. address and control buses

-- Refresh logic

23,000 devices

(4) Interface 1nit and Test Bed --

-- External Inerface Logic

-- Test circuitry

-- Latche and hi\er,

15,000 devices

IDm I,-' T,,al 660,582 devices

I igure 1.:
----------------------------- jr,-- -- ,,--ple- --- S----at-,

- 20-

5. Conclusion

The above is but one example of the fourth cycle of hardware developments for the graphics

syst em. The purposc behind the presentation of this effort is to highlight the possibilities and

limitations of research in this cycle. One of the key points described at the start of this paper is

that applications users are never satisfied with the graphics capabilities of the currently available

s)stem. We need to reexamine this notion in light of the production of the contour surface

display generator. We can be assured that once we produce such a system that the applications

user will return to us with further demands for either other algorithms, or additional capabilities

in the already manufactured system. In order to respond to these desires for special hardware for

select applications graphics algorithms, we need to either justif) the special hardware effort on the

basis of widespread demand, or make the production of that special hardware inexpensive. We

cannot count on the widespread demand for any algorithm for which we desire real-time perfor-

mance. The only solution then is to make the production of that special hardware inexpensive.

The first step in that process is to put together a methodology based upon experience with design-

in such special purpoe display gene-rators. Once that niethodology is sufficiently developed. %%e

cal tLen set staidards for the production of such s\stenvs. N\e can see an analog) in the %orld of

VI.SI design. The design and production of qpecial \'.SI chips came within the possibilities of the

uni er -nt. c,,ritinit% after standard interfaces %ere defined for chip production. Hence, we saA

ttw e~taili-hrnent of "silicon foundries". If we extend thil idea to that of the productiorn of si,,-

rial hardo are for select graphics algorithms of the applicat ions ti.,er. thi nians, that ,,,ie, here it

th, fur re the'r will ie "real-time. graphics foundrie'". It t' t, .arI- tht- (lrection that we cat)

\p,.ct fu ure ,b' ,.prnent fr v,,rkstation graphic, ca, l,ilit i,'- t, ir,,ro,.,t

6. References

I Barr\ C) and Sucher. J. H. "Interactive Real-Tinie ('ontouring of Density Maps." Ameri-
can Cr. stallographic Association Winter Meeting. llonolulu. March 1979. Poster Session

2 (lark. .I H and Davis. T. "" orkstation Inite, Heal-Time Graphics with 1 nix. Kthernet "
Electronics. October 20. 1983.

• .-- ,-.-- .-.-. -.- .-- -., "- -'. -.-.-.-.-. "....-.-.-..-.........-..,-,....,...... --..".'-.'....,"..............."..."..-.-....,..
, :Qo"-" .oO ""°. . *. ..o &' & ,. c'-% , • "." .°. °C .-.. o .°. ." " ." . " . .o . .

-21

C.(lark. J 11 "The Geornet, Engine: A VLSI Geonietr\ S~ stern for Graphics," Computer
Graphics: A Quarterly Report of SIGGR4P1-A.CM. V'ol. 16. No 3 (.Jul) 1982), p. 127.

4 Frank. Ed%%ard H and Sproull. Robert F, "Testing and Debugging Custom Integrated Cir-

cuits." Computing Surveys. Vol 13. No 4 (D)ecember 1981). p) 425,

5. Fuchs. Iienr) et al. "Fast Spheres, Shadows, Textures, Transparencies. and Image Enhance-
ments in Pixel-Planes," Computer Graphics: A Quarterly Report of SIGGRAPH-ACM, Vol. 19,
No. 3 (July 1985). p. I11.

6. Intel Corporation Technical Publication. /nit/ Alultibub Specification, Intel Corporation, Santa
Clara, California. 1982.

7. MacGregor. D.. Mothersole. D)., and Moyer. B. "The Motorola MC68020," JEL Micro, Vol.
4. No. 4 (August 1984). p. 101.

8 Mecad. Carver and Conwav. L- nn Introduction to VLSI Systems.i Heading. Massachusetts:
Addison- WesleN 1Puhlishing Compan\. 1980.

9 Mijcrone% "IBM Experimental Million Bit Memnory (Chip." IEEE Micro, \Vol. 4. No. 4 (August
1984). p. 119.

10 SIGGRAPI.LS 5for Cornputer Graphics. Special Interest Group on Computer Graphics An-
nual Meeting. San Francisco. July 1985. Notes for Course 20.

11 Sutherland. I E and Mlead. C.A. "Microelectronics and Computer Science," Scientific A4meri-
ran. September 1977. pp 210-228.

12 1 hir ILe nardl .4 1,,rithyti-9Sructured Compute r ArTray., arid N\cti orhi. Orlanrdo. Florida:
\ca.1'rnic l'r."" 1981I

13 N~'alker. Robert .A and Zvda. Michael J "An Integrated Systems Architecture for Real-Time
wtour S urface [)tspla\ Genierat on." Technical Report N !".-85f MI 1 U.\on r(\ . California:

D elpartmre nt of ('unput er S'" rice. Naval IPot grauin Sc h' ol A ugust 19K

I1I /'sda. \1,clhael .1 ''.)''corn 1 osaldl(Algorithm ftr ('nittur Sujrface lDn-pla\ Gerneraion."
iT'e'hnrical He.r N1524Ii Mont erey. California I leparitnent of (ipun er Sc,'nrcc. N\aval
F'.-.n graduat' Sci. Anuus V984

It: /\da MIchlael J .l.st Driven IDisplaN Rotation anl(] Utntl (risol' Managemnt

'I firniCel Mlonniraridirfl 21 "ti Louis. Department of (orniluner Scienc. V a-hiiotn 1-ni~erw.\.

Distribution List for Papers l1'rittert by Michael J. Zyda

Dr. Henry Fuchs.
208 New West Hall (035A).
University of North Carolina,
Chapel H-ill, NC 27514

Dr. Kent R. Wilson,
University of California, San Diego
B-014,
Dept. of Chemistry.
La Jolla, CA 92093

Dr. Guy L. Tribble, III
Apple C'omputer.
20525 Mlariani Ave.
Cupertino, CA 95014

Dr. Victor Lesser.
University of Massachusetts. Amherst
Dept. of Computer and Information Science.
Amiherst. MA 01003

Dr. Gunther Schrack.
Dept. of Electrical Engineering.
University of British Columbia.
Vancouver, B.C.. Canada V'6T 1\N'

Dr. R. Danicl Burgeroii.
Dcpt. (if (oiiptier(' Sc i(IflC.
lliiversity of Newv Hanipshire.
Durhami. NIH 03824

Dr. Ed Vegrian.
Divi-joni Head.
MNr hei'matical Sciences Divisin.

)fficu. o, Naval Research.
500) N. Quincy Street.
Arlington. VA 22217-5000

Dr. Gregorv B. Smith.
ATT hiforniation Systemns.
190) River Road.

" 11111it -J 07901

Dr. Lynnm ConwaN.
Defense Advanced Research Projects Agency/IPTO.
1400 WVilon Blvd.,
Arlington. VA 22209

-2-

Dr. ,i 'n Lowrance,
SRI International,
333 Ravenswood Ave.
Menlo Park, CA 94025

Dr. David Mizell,
Office of Naval Research,
1030 E. Green St.
Pasadena, CA 91106

Dr. Richard Lau.
Office of Naval Research,
Code 411.
800 N. Quincy St.
Arlington. VA 22217-5000

Dr. Y.S. Wu.
Naval Research Laboratory.
Code 7007,
Washington. D.C. 20375

Dr. Joel Trimble.
Office of Naval Research.
Code 251.
Arlington. VA 22217-5000

Robert A. Ellis.
Calma Company,
527 Lakeside Drive.
Sunnyvale. CA 94086

Dr. James H. Clark.
Silicon Graphics, Inc.
630 Clyde Court.
Mountain View. CA 94043

Shin ji Tomita.
Dept. of Information Science.
Kyoto University.
Sakyo-ku. Kyoto, 606. Japan

Hircoshi Hagiwara.
Dept. of Information Science.
Kyoto University.
• akyo-ku. Kyoto. 606. Japan

Dr. Alain Fournier.
Dept. of Computer Science.
University of Toronto.
Toronto. Ontario. Canada
N 15! 1A4

..-'

Dr. Andries Van Dam.
Dept. of Computer Science,
Brown U'niversitv.
Providence. RI 02912

Dr. Brian A. Barsky,
Berkeley Computer Graphics Laboratory,
Computer Sciences Division,
Dept. of Electrical Engineering and Computer Sciences,
University of California,
Berkeley, CA 94720

Dr. Ivan E. Sutherland,
Carnegie 'Mellon University,
Pittsburg. PA 15213

Dr. Turner \Vhitted,
208 New West Hall (035A),
University of North Carolina.
Chapel Hill, NC 27514

Dr. Robert B. Grafton.
Office of Naval Research,
Code 433.
Arlington. Virginia 22217-5000

Professor Eihachiro Nakamae,
Electric Machinery Laboratory.
Hiroshima University.
Higashihiroshiina 724. Japan

Carl Machover.
Machover Associates.
199 Main Street.
White Plains. New York 10601

Dr. Buddy Dean.
Naval Postgraduate School,
Code 52. Dept. of Computer Science.
Monterev. California 93943

Earl Billingsley.
43 Fort Hill Terrace.
Norliliarnpton. MA 01060

Dr. .lan Cunv.
.nivritv of MXassachusetts. Amherst
Dept. of Computer and Information Science.
Amherst. MA 01003

Robert Lu:.-.
Silicon Graphics. Inc.
630 Clyde Court.
Mountain View. CA 94043

,4. .

.

' •" -,1 u - ° • - I -. . . . -| | 2 d| I

!.4.

Jeff Hausch,
Silicon Graphics, Inc.
630 Clyde Court,
Mountain View, CA 94043

Lt. Robert A. Walker,
Naval Sea Systems Command (SEA 61YM),
Department of the Navy,
Washington, DC 20362-5101

Dr. Barry L. Kalman,
Washington University,
Department of Computer Science,
Box 1045,
St. Louis, Missouri 63130

Dr. Wm. Randolph Franklin,
Electrical, Computer, and Systems Engineering Department,
Rensselaer Polytechnic Institute,
Troy, New York 12180-3590

Dr. Gershon Kedem,
Microelectronics Center of North Carolina,
PO Box 12889,
3021 Cornwallis Road,
Research Triangle Park,
North Carolina 27709

Dr. Branko J. Gerovac.
Digital Equipment Corporation.
150 Locke Drive LMO4/H4. Box 1015
Marlboro, Massachusetts 01752-9115

Robert A. Schumacker,
Evans and Sutherland.
PO Box 8700.
580 Arapeen Drive.
Salt Lake City. Utah 84108

R. A. Dammkoehler,
Washington University,
Department of Computer Science.
Box 1045.
St. Louis. Missouri 63130

Dr. Lynn Ten Evck.
Interface Software.
79521 Highway 99N,
Cottage Grove, Oregon 97424

..............

~-5-

Toshiaki Yoshinaga,
Hitachi Works, Hitachi Ltd.
1-1. Saiwaicho 3 Chome,
Hitachi-shi, Ibaraki-ken,
317 Japan

Takatoshi Kodaira,
Omika Works, Hitachi Ltd.
2-1, Omika-cho 5-chome,
Hitachi-shi, Ibaraki-ken,
319-12 Japan

Atsushi Suzuki,
Hitachi Engineering, Co. Ltd.
2-1, Saiwai-cho 3-Chome,
Hitachi-shi, ibaraki-ken,
317 Japan

Toshiro Nishimura,
Hitachi Engineering, Co. Ltd.
2-1. Saiwai-cho 3-Chome,
Hitachi-shi. Ibaraki-ken,
317 Japan

Dr. John Staudhammer.
Dept. of Electrical Engineering,
University of Florida.
Gainesville. Florida 32611

Dr. Lewis E. Hitchner.
(omputer and Information Science Dept.
237 Applied Science Building,
University of California at Santa Cruz,
Santa Cruz. California 95064

Dr. Pat Mantev.
ornputer Engineering Department,

University of California at Santa Cruz.
Santa Cruz. California 95064

Dr. Walter A. Burkhardt,
I niversity of California, San Diego
Dept. of (Computer Science,

La Jolla. California 92093

P. K. Rustagi.
Silicon Graphics. Inc.
630 Clyde Court.
Mountain View, CA 94043

Peter Broadwell,
Silicon Graphics, Inc.
630 Clyde Court,
Mountain View, CA 94043

Nori \filler.
Silicon Graphics. Inc.
630 C'lyde Court.
Mlountain V Iiew. CA 94043

Dr. Tosiyasu L. Kunii,
Department of Information Science,
Faculty of Science,
The University of Tokyo,
7-3-1 Hongo. Bunkyo-ku, Tokyo 113,
Japan

Dr. Kazuhiro Fuchi.
Institute for New Generation Computer Technology,
NMita-Kokusai Building 21FL.
1-4-28 Mita. Mlinato-ku, Tokyo 108, Japan

Defense Technical Information Center (2)
Attn: DTIC-DDR
Cameron Station
Alexandria, VA 22314

Library, Code 1424 (2)
Naval Postgraduate School
Monterey, CA 93943

Research Administration Office
Code 012
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analyses
2000 N. Beauregard Street
Alexandria, VA 22311

FILMED

1-85

DTIC

